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Abstract

In response to USRA/NASA request for proposal number ASE274L.0194, Exploratory

Technologies submits this report, which outlines its design of the Mars Analysis and Return

Vehicle with In Situ Resource Utilization (MARVIN) project. The MARVIN mission is designed

to collect samples of the Martian environment; to produce fuel from local Martian resources; and

to use the fuel produced to return the samples to Earth. It uses only existing technologies.

Exploratory Technologies' mission-design efforts have focused on methods of orbit determination,

sample collection, fuel production, propulsion, power, communications, control, and structural

design.

Lambert Targeting provided AVs, launch dates, and travel times. The landing site is the Tharsis

Plateau; to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of

soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with

a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed

line to the compressor in the fuel-production facility; a dust sample, from the dust-collection

container in the fuel-production facility; and a redundant dust sample, with a passive filter system,

which relies upon neither a power source nor other collection methods. The Sample-Return

Capsule (SRC) houses these samples, which are triply contained to prevent contamination.

Proven technology can be used to produce methane and oxygen for fuel with relative ease at the

landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and

hydrogen (brought from Earth); the Reverse Water-Gas Shitt unit combines carbon dioxide and

hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into

hydrogen and oxygen. The Mars-Lander Vehicle (MLV) transports the equipment from Earth to

Mars. The Mars-Ascent Vehicle (MAV) contains the SRC and the engine, which is the same for

both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory

remains on Mars. This report presents detailed sizing information, for which a spreadsheet has

been developed. The trends suggest possibilities for expansion, and suggestions for future work in
these areas are offered.
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Executive Summary

Overview

The MARVIN project is a design for an unmanned mission to Mars focusing on sample return and

in situ fuel production. It is likely to serve as a precursor to any manned Mars missions. The

MARVIN spacecraft lands on Mars, collects samples of the Martian environment, produces fuel

from local Martian resources, and uses this fuel to return the samples to Earth. Producing fuel on

Mars reduces the amount of fuel the spacecraft needs to carry from Earth. Martian atmosphere

can also be used to help provide water and oxygen for life support. However, before astronauts

can rely on these in situ systems, the systems must be tested on Mars.

Mission Objectives

The MARVIN mission has three objectives:

1) Collect and return samples of the Martian environment.

2) Produce fuel from local Martian resources.

3) Use the fuel produced on Mars for the return voyage.

Design Specifications

Exploratory Technologies incorporated proven components and existing technologies in its design

for the MARVIN mission. Exploratory Technologies' design encompasses aspects of trajectory

analysis, fuel production, sample collection, propulsion, power, structures, communications, and
control.

Public Support

The support and involvement of the public in any space activity is paramount for mission success.

Even if the mission fails to produce fuel, to collect samples, or even to return to Earth, it is a

success if the public recognizes the challenges that the mission represents. Furthermore, students

can learn the importance of space exploration and how the information we collect can help us

better understand Earth if they are sent the information scientists gather from these first samples
from another planet. Teachers can use this first-ever information to lend excitement to their lesson

plans, in courses as diverse as history, mathematics, geography, physics, chemistry, and biology.

Mission Scenario

The MARVIN spacecraft is launched from Earth on a Titan IV/Centaur booster/upper stage

configuration. When the Mars-Lander Vehicle (MLV) separates from the booster/upper stage, a

Pratt & Whitney RL-10 rocket engine continues to provide AV for midcourse corrections, Mars

orbit insertion, and aerobraking maneuvers. After aerobraking is complete, the aerobrake is

jettisoned, and the parachute and landing gear are deployed. Once on the surface, lander-based

systems collect samples of soil, dust, and atmosphere while fuel is being produced. The samples

are stored in the Sample-Return Capsule (SRC). The RL-10 engine is used to launch the Mars
¢,

Ascent Vehicle (MAV) into a low Mars orbit. The engine then propels the MAV to Earth, where

the SRC separates from the MAV. The SRC is retrieved after atmospheric entry.



Advantagesof ISRU
In an In Situ Resource Utilization (ISRU) mission, local resources are used to produce materials

that are critical to the mission. This principle has several advantages. Producing fuel and life-

support substances during the mission (e.g. on Mars) can reduce the initial launch weight of the

vehicle. These reductions translate directly into cost savings. ISRU is even more advantageous

for larger, manned missions. The table below illustrates the savings when ISRU is implemented in

the MARVIN mission. Since this mission uses the same engine for both the Earth-Mars and Mars-

Earth segments of the mission, methane is burned during both orbital transfers. If ISRU were not

implemented on Mars, another more efficient fuel, such as hydrogen-oxygen, would likely be used

for both mission phases. All other components of the two designs are assumed to be identical.

Comparison of Mars Missions: Mass Launched from Earth

With ISRU

methane fuel

4670 kg

Without ISRU

hydrogen-oxygen fuel

7800 kg

These savings in launch mass of the ISRU misson are the result of lower fuel mass, and they

translate into lower cost because a less expensive booster can be used.

Trajectory Analysis

For the Earth-Mars transfer, the Titan IV/Centaur provides most of the AV required. The

remaining 3.7 km/s AV required for orbit insertion at Mars is provided by a Pratt & Whitney RL-

10 rocket engine. At Mars, aerobraking maneuvers require a total AV of.3 km/s. The transfer

time from Earth to Mars is 201 days.

For Mars ascent, a AV of 3.5 km/s places the spacecraft into a low Mars orbit of 200 km. An

additional 2.14 km/s inserts the spacecraft into the Mars-Earth trajectory. The travel time on this

trajectory is 205 days. At Earth, the relatively small SRC uses direct entry to enter the

atmosphere.

Sample Collection

The MARVIN spacecraft lands at the Tharsis Plateau, where it collects dust, soil, and atmosphere

samples from the Martian environment with lander-based collection devices. The samples are then

stored in the Sample-Return Capsule, where they are triply contained to prevent contamination.

Each sample is collected by a dedicated, unique system, which provides redundancy in the sample-

collection process.

The Martian wind-blown dust circulates over the entire planet. Therefore, a sample of it can

provide planetary geologists with data on the average composition of Mars, making it the most

important sample. Its importance demands that two such samples be collected by separate

methods. One sample is collected from the cyclone filter in the fuel-production facility. The filter

separates the dust from the atmosphere, and the dust drops into a container. A robotic arm

removes the container from the fuel-production facility and places it in the SRC. Dust is also



collectedwith a windsock/funnel configuration attached to the SRC, which catches airborne dust

carried by the wind. The dust falls through the funnel into a storage container in the SRC itself.

A robotic arm collects rocks and soil samples from the ground near the lander. The robotic arm

has seven degrees of freedom and a 3 meter reach. These samples are also stored in containers in
the SRC.

An atmospheric sample benefits scientists who are developing fuel-production and life support

systems. The low density of the Martian atmosphere makes an active collection device necessary.

A bleed line from the compressor in the fuel-production facility leads to a storage container in the

SRC. The atmospheric sample is collected at 1.3 MPa.

A maximum of 5 kg of samples is collected. This total is apportioned as follows: 1.5 kg of primary

dust, .5 kg of redundant dust, 2.5 kg of soil, and. 5 kg of atmosphere. The individual sample

containers are vacuum sealed and are placed in the Sample-Container Assembly (SCA) in the SRC.

The SCA provides two redundant seals for sample containment.

Fuel Production

The landing site affects the choice of fuel produced. Further constraints on the type of system to

be used include the mass and the reliability of the components. Furthermore, the components must

use only proven technology. For these reasons, a methane-oxygen plant was chosen. The major

components of the fuel-production facility include a Sabatier reactor, a Reverse Water-Gas Shift

unit, and an electrolyzer. Other components include filters, a compressor, pumps, gravity

separators, heat exchangers, and refrigeration devices. The Sabatier reactor combines hydrogen

imported from Earth with carbon dioxide extracted from the Martian atmosphere to produce

methane and water. The electrolyzer splits the water into oxygen (which is stored) and hydrogen

(which is fed back into the system). The RWGS unit combines carbon dioxide with hydrogen to

produce carbon monoxide and water. The methane and oxygen produced are liquefied and are

stored for use in the rocket engine.

During the approximately 540 day stay on Mars, the fuel-production facility must produce 2,241

kg of oxygen and 560 kg of methane. This corresponds to a total production rate of 5.19 kg/day.

Propulsion

A Titan IV with a Centaur upper stage was chosen to launch the MARVIN spacecraft from Earth

on the basis of its launch capacity and its fairing size. Once the Titan IV and Centaur separate

from the spacecraft, the spacecraft still requires a propulsion system to carry it through the last

stages of its Earth-Mars transfer. A Pratt & Whitney RL-10 engine is used here, and it is used

again for the launch from Mars and the Mars-Earth transfer. This engine burns methane and

oxygen (I_,=370 s) for all mission phases, using 2,384 kg of fuel from Earth to Mars and 2,801 kg

from Mars to Earth. The engine has a thrust capacity of 30,000 N - 98,000 N and includes a

gimbaled nozzle for controllability. The engine has been tested with methane and has performed

well under conditions where multiple restarts were required. Multiple-restart capability is

important in this mission because periodic firings of the engine may be necessary to maintain the



engine'sperformanceover the long stay on Mars and because the engine is used repeatedly on
orbit.

The fuel-production facility, the robotic arm, and various communications and control equipment

require power. The largest consumer of power is the fuel-production facility (1900 W) which is

only in operation on the surface of Mars. Therefore, two separate power sources can be used: one

for on orbit operations, and one for surface operations. For surface operations, a Dynamic Isotope

Power Source (DIPS) provides power to the fuel-production facility, the robotic arm, and

communications devices. The DIPS can provide up to 2500 W of power and weighs 352 kg. The

DIPS is left on Mars to reduce the weight of the return spacecraft. Since on-orbit operations do

not require much power, the DIPS can be left on Mars, and a smaller, lighter-weight system can be

used. On orbit, solar cells and batteries are the most practical sources of power: they are

lightweight and require little space.

Communications, Navigation, and Control

Control of the spacecraft must be automated since real-time remote control is impossible.

Furthermore, the control should also be reprogrammable from earth. The spacecraft is primarily

three-axis stabilized. However, during thrusting procedures, spin stabilization is necessary. Rate-

integrated gyros track the angular orientation of the spacecraft. An accelerometer integrates thrust

to provide AV calculations. Monopropellant hydrazine control jets are used to correct the attitude

of the spacecraft. One set of eight control-jet triads produces one Newton of thrust for each jet.

On the spacecraft, star mappers provide data for automatic position determination.

Simultaneously, Earth-based computers use NASA's Deep Space Network to determine the

position and orbit of the spacecraft.

Structures

The MARVIN spacecraft consists of three configurations: the Mars Lander Vehicle (MLV), the

Mars Ascent Vehicle (MAV), and the Sample-Return Capsule (SRC). The MLV is a truss

structure that supports the MAV, the fuel-production facility, the robotic arm, and the landing

gear. At Mars ascent, the MAV and SRC separate from the MLV. The MAV consists of the fuel

tanks and rocket engine. The SRC sits atop the MAV. At Earth, the SRC separates from the

MAV and is retrieved after atmospheric entry.

The truss structure is made of aluminum - lithium 2090-T83. The methane and oxygen tanks are

made of titanium. However, since titanium becomes brittle at the temperatures required for

cryogenic hydrogen storage, the hydrogen tanks are made of steel. The height of the MLV with

the landing gear retracted is 5.0 m, and its diameter is 3.5 m. When the landing gear is fully

extended, the MLV is 6.0 m high and 9.0 m in diameter. The MAV is 5.0 m high and 3.5 m in

diameter. The SRC is approximately 1 m high by 1 m wide.



1.0 Introduction

Exploratory Technologies submits this report in response to RFP number ASE274L.0194.

The report details a preliminary design for an unmanned Mars mission that focuses on m situ

fuel production and on sample return. This report outlines Exploratory Technologies'

approach to the mission objectives in two sections: Mission Elements and Budget.

1.1 Background

Many studies have addressed the design of m situ fuel-production facilities and sample-

return missions. Some of these studies have been conducted by groups at The University of

Washington, NASA Johnson Space Center and the Jet Propulsion Laboratory. Exploratory

Technologies has incorporated their research in its efforts to design a simple, lightweight

spacecraft that uses current technology.

The MARVIN mission includes both sample return and m situ fuel production. However,

the sample-return portion of the mission constrains the m situ resource utilization (ISRU) fuel

production. Scientific requirements for the samples govern the choice of landing site, which in

turn determines the types of fuel that can be produced. However, the landing site must also

be compatible with available fuel-production methods: the fuel-production system must be

capable of producing fuel for the return mission from resources at the science-driven landing

site.

This mission is not merely justified--it is essential to future Mars missions. Producing fuel

at the destination reduces the amount of fuel the spacecraft needs to carry from Earth. This

decrease in fuel reduces both the size and the cost of the mission. The Martian atmosphere is

approximately 96% carbon dioxide, 3% nitrogen, and 1% argon. So, for example, methane,

oxygen, and water can be formed from atmospheric carbon dioxide and imported hydrogen,

and the methane can be used as a propellant. Oxygen serves as the oxidizer. Also, the oxygen

and water can provide life support. These concepts suggest that future missions can be made

less expensive with ISRU.

Such a mission is likely to serve as a precursor to any manned Mars missions, on which

ISRU is most easily justified on the much larger, manned missions. The fuel-production

facility can be tested in a Mars-like environment, complete with dust and carbon dioxide, on

Earth. However, astronauts cannot rely on such a system until it has in fact been tested and

certified on Mars.



Martiansampleswill not onlyhelpanswerscientificquestionsaboutMarsandits

evolution,but theywill alsohelpusunderstandour ownplanet. A small-scalesample-return

missiondoesnot profit muchfrom ISRU. Thetradeoffbetweenthemassof thefuel for the

returntrip andthemassof thefuel-productionfacility is negligible.However,demonstrating

thatMarsISRU isfeasibleandtestingthe equipment (including the rocket engine) verifies that

the complete system is reliable and that it can be used for future Mars missions.

1.2 Mission Objectives

The MARVIN mission has three objectives:

• Collect and return samples from the Martian environment.

• Produce fuel from local Martian resources.

• Use the fuel produced on Mars for the return voyage.

Each mission objective is equally important. Therefore, this report mentions several

redundancy options that are designed to ensure mission success. The first option is to launch

two identical vehicles. Each vehicle has one fuel-production facility, one set of sample

collection devices, and one primary engine system. The second option is to launch one

vehicle that carries extra methane and oxygen in the event the fuel-production facility

produces no fuel or produces unusable fuel. Also, in the second option the primary engine

system includes three or more engines as a provision for a single engine failure. This report

presents a design for the vehicle to be used in the first option, which follows in the footsteps

of the Viking, Voyager, and Mars Observer missions, all of which used a similar strategy.

1.3 Advantages of ISRU

In an In Sire Resource Utilization (ISRU) mission, local resources are used to produce

materials that are critical to the mission. This principle has several advantages. Producing

fuel and life-support substances during the mission (e.g. on Mars) can reduce the initial

launch weight of the vehicle. These reductions translate directly into cost savings. ISRU is

even more advantageous for larger, manned missions. Table 1.3.1 illustrates the savings

when ISRU is implemented in the MARVIN mission. Since this mission uses the same

engine for both the Earth-Mars and Mars-Earth segments of the mission, methane is burned



during both orbital transfers. IfISRU were not implemented on Mars, another more efficient

fuel, such as hydrogen-oxygen, would likely be used for both mission phases. All other

components of the two designs are assumed to be identical.

Table 1.3.1 Comparison of Mars Missions:
Mass Launched from Earth

With ISRU

(methane fuel)

4670 kg

Without 1SRU

(hvdrogen-o_gen fuel)

7800 kg

These savings in launch mass of the ISRU mission are the result of lower fuel mass, and they

translate into lower cost because a less expensive booster can be used.

1.4 Design Specifications

The RFP specifies that the design of the MARVIN mission must include certain elements

and embrace certain design principles:

• a fuel-production facility

• sample-collection device(s)

• an available booster/upper stage for launch from Earth

• a Mars-Earth trajectory using ISRU fuel

• proven components

• existing technologies

1.5 Deliverables

Exploratory Technologies has delivered a design that meets the above specifications.

addition, Exploratory Technologies has built a model of the spacecraft and has created a

poster depicting the phases of the mission. Exploratory Technologies' design encompass

aspects of trajectory analysis, fuel production, sample collection, propulsion, power,

structures, communications, and control:

In
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• The trajectory-analysis design includes AVs for the both Earth-Mars trajectory and

the Mars-Earth trajectory and the travel time between planets.

• The fuel-production design identifies the type of fuel to be produced; identifies the

components of the fuel-production facility; calculates the fuel-production rates; and

determines the mass, size, and power requirements of these components.

• The sample-collection design presents landing-site selection; the types and amounts of

samples to be collected, the devices to collect the samples; and the requirements for

sample-storage containers.

• The propulsion design identifies the booster/upper stage selected for Earth launch,

discusses the primary engine and its sizing, and calculates the fuel requirements for the

Earth-Mars and Mars-Earth trajectories.

• The power design includes the power-source selection, the mass and size of the

selection, and the power-output capability.

• The structural design includes the Mars-Launch Vehicle layout, including size and

mass, the Mars-Ascent Vehicle layout, and the Sample-Return Capsule layout.

• The communications and control design identifies essential equipment for this mission

and presents DSN antenna selection.

1.6 Mission Scenario

The MARVIN spacecraft is launched from Earth on a Titan IV/Centaur booster/upper

stage configuration. When the Mars-Lander Vehicle (MLV) separates from the booster/upper

stage, a Pratt & Whitney RL-10 rocket engine continues to provide AV for midcourse

corrections, Mars orbit insertion, and aerobraking maneuvers. After aerobraking is complete,

the aerobrake is jettisoned, and the parachute and landing gear are deployed. Once on the

surface, lander-based systems collect samples of soil, dust, and atmosphere while fuel is being

produced. The samples are stored in the Sample-Return Capsule (SRC). The RL-10 engine is

used to launch the Mars Ascent Vehicle (MAV) into a low Mars orbit. The engine then

propels the MAV to Earth, where the SRC separates from the MAV. The SRC is retrieved

after atmospheric entry.



1.7 Public Support

Public support of and involvement in any space activity is paramount for mission success.

Even if this mission fails to produce fuel, collect samples, or even return to Earth, the mission

has not been a complete failure if the public recognizes the challenges that the mission

represents. It has been 25 years since we landed on the Moon. No one has forgotten that

event because of the public's involvement. The novelty of watching live footage of the

astronauts encouraged the public to become involved, and they wholeheartedly supported the

Apollo program.

However, since no astronauts are involved in this mission, encouraging public involvement

requires a more creative solution. Video images can once again be provided; however, they

lose some of their impact when no astronauts are involved. Student involvement is clearly a

way to attract public support. Students can learn the importance of space exploration and

how the information we collect can help us better understand Earth if they are sent the

information scientists gather from these first samples from another planet. Teachers can use

this first-ever information to lend excitement to their lesson plans, in courses as diverse as

history, mathematics, geography, physics, chemistry, and biology; and they may be able to

base homework or classwork on the data from Martian samples.
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2.0 Mission Elements

This section discusses details of Exploratory Technologies' design of the MARVIN

mission, an introduction to which is presented here. Lambert Targeting is being used to

determine AVs, launch dates, and travel times. The landing site is the Tharsis Plateau; to the

southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust,

and atmosphere are collected with lander-based collection devices: the soil sample, with a

robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed

line to the compressor in the fuel-production facility; a dust sample, from the dust-collection

container in the fuel-production facility; and the redundant sample, with a passive filter

system, which relies upon neither a power source nor other collection methods. The Sample-

Return Capsule (SRC) houses these samples, which are triply contained. Proven technology

can be used to produce methane and oxygen as fuel with relative ease at the landing site: the

Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen

(brought from Earth); the Reverse Water-Gas Shift unit combines carbon dioxide and

hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into

hydrogen and oxygen. The Mars-Lander Vehicle (MLV) transports the equipment from Earth

to Mars. The Mars-Ascent Vehicle (MAV) contains the SRC and the engine, which is the

same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth

trajectory remains on Mars.



2.1 Trajectory Analysis

This section discusses the AV requirements for all phases of the MARVIN mission. It also

presents the Earth-launch date and the associated dates for arrival at Mars, departure from

Mars, and arrival at Earth.

2.1.1 Analytical Methods

Lambert Targeting is a flexible technique for designing interplanetary trajectories It

provides a means to calculate an Earth-Mars transfer orbit from the following parameters of

the MARVIN mission:

the AV capabilities of the booster/upper stage system

the amount of time that the spacecraft must remain on Mars

the amount of fuel that can be produced

Lambert Targeting bases its analysis only on the positions of the planets and a predetermined

travel time between them. However, in this mission, travel time is related to fuel-production

rates, which depend on the fuel requirements of the trajectory. Therefore, an iterative

method, in which these parameters and the possible Lambert solutions are functions of one

another, can yield the best transfer trajectory for the mission.

"Pork chop plots", shown in Figures 2.1.1 and 2.1.2, [1] for Earth to Mars and Mars to

Earth trajectories provide information on the amounts of C3 energies necessary for many

possible scenarios and thus provide dates and transfer times for minimum AV. The Mission

Planning Library (MPL), a set of FORTRAN subroutines, was also used to calculate more

precisely the Earth-launch dates and the C3 energies associated with departure from and

arrival at the planets for those launch dates. Excel spreadsheets converted these C3 values to

AVs and fuel masses. Both the Earth-Mars trajectory and the Mars-Earth trajectory were

subject to this analysis. Thus, a timetable for the entire mission has been constructed from

fuel-production time and the Lambert dates for return to Earth.
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Also, the AV requirements and the payload capabilities of various launch vehicles and

booster configurations have been studied with the help ofa TKT Solver model. With the dry

mass of the spacecraft, this model determines the AV that the spacecraft must provide after

the booster separates. An iterative process identified the most efficient combination of fuel

consumption, spacecraft weight, AV, and overall design. Specifying the AV from LEO to

Mars orbit also sets a maximum payload mass for the spacecraft (as discussed in Section 2.7),

which limits the possibilities for changing the design.

2.1.2 Analysis

2.1.2.1 Travel Time

Minimizing the energy required for the return trip reduces the amount of fuel that must be

produced on Mars, resulting in a lighter fuel production facility, lighter fuel tanks, and

reductions in other system masses. This savings helps minimize not only the fuel requirements

for the return trip, but for the outbound trip as well. However, the return date also must be

chosen such that it does not require a shorter travel time from Earth or a shorter stay time on

Mars, both of which increase fuel mass, as discussed in Section 2.7. A preliminary analysis,

using the pork chop plots, identified a window around a return date of April 20, 2003 that

minimizes the C3 required for the return trip and provides the mission with roughly a 730 to

750 day interval between Earth launch and Mars launch. Furthermore, the minimized Earth-

launch energy associated with this window enables an outbound travel time of roughly 200

days, giving the spacecraft a 530-550 day stay on Mars.

The Mission Planning Library subroutines provided a more thorough analysis of the

window. The analysis made use of a FORTRAN program that varied both launch dates and

travel times and iterated to find the best solution. The choice of Earth-launch date minimizes

energy at Mars arrival since a booster provides the initial injection AV. As it turns out, the

minimum energy at Mars arrival varies slightly with the minimum energy for Earth departure.

The analysis resulted in an Earth departure date of April 8, 2001, a travel time of 201 days, a

540-day stay on Mars, and a Mars departure date of April 19, 2003. The spacecraft arrives at

Earth 205 days later.

2.1.2.2 Aerobraking

Aerobraking is a technique in which a spacecraft slows down using a planet's atmosphere

to provide drag to lower the spacecraft's energy. A successful maneuver can significantly



11

reducethe AV requirements of the propulsion system, thus reducing the initial launch mass.

Instead of a direct entry to the landing site, the spacecraft performs multi-pass maneuvers

from a parking orbit before landing on the surface. Such a scenario not only reduces fuel use

but also allows the rotation of the planet to bring the landing site into proper alignment with

the spacecraft. Unfortunately, there are many restrictions on the scenarios that can be used to

bring the craft to the surface, and a detailed analysis of the sequence is complex and best

studied at the time of the maneuvering. Exploratory Technologies presents aerobraking as a

workable solution for mass reduction and offers two multi-pass scenarios for braking to the

Martian surface. Details of both scenarios are provided in Tables 2.1.1 and 2.1.2

Table 2.1.1 Aerobraking Scenario 1

Periapsis Altitude (km)

Apoapsis Altitude (kin)

Apoapsis Burn (km/s)

First Pass

-20
Parkin_ Orbit
250

Second Pass

-97

2,470 2,470 600

.036.0565

Table 2.1.2 Aerobraking Scenario 2

Periapsis Altitude (km)

Apoapsis Altitude (km)
Burn

Entry Orbit First Pass

200

Second Pass

.023 .261

Third Pass

.015

80 80 10

2,000 2,000 500 500

Table 2.1.1 describes a scenario presented in the University of Washington report. This

sequence begins with the MLV arriving from Earth in a hyperbolic trajectory and making an

immediate atmospheric pass for aerocapture. This pass places the vehicle into an elliptical

orbit (2470 x -20 km altitude) about Mars. At apoapsis, a small bum raises the periapsis out

of the atmosphere. As soon as the landing site is in proper alignment, the lander performs

another burn at apoapsis to lower the periapsis and enter the atmosphere for a second pass.

This pass is a "skip maneuver" that lowers the apoapsis to just out of the atmosphere. For the

final descent the vehicle aerobrakes to an altitude of 10 km, whereupon parachutes are

deployed for continued braking. The burns for this scenario require a AV on the order of. 1

km/s.
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For the second scenario, shown in Table 2.1.2, the spacecraft arrives at Mars in a

hyperbolic transfer trajectory and fires its engine at periapsis to enter a highly elliptical orbit

about the planet (2,000 x 200 km altitude). At apoapsis the engine fires again to lower the

periapsis farther into the atmosphere. Upon arrival at the new periapsis, the spacecraft has

lost some velocity and fires once again to lower apoapsis and thus reduce its entry velocity.

On the final pass, the spacecraft fires one last time at apoapsis to lower the pefiapsis altitude

deeper into the atmosphere and allow for final braking with the parachute. The three bums

for this scenario require a AV on the order of only 0.3 km/s.

2.1.2.3 AV Estimates

Using a low Earth orbit of 200 km provides numerous injection opportunities in a day.

The Excel spreadsheets converted the energy associated with the chosen launch date into a

value of 3.70 km/s for AV at Earth departure.

Although a circular orbit around Mars also provides a high number of descent-to-surface

opportunities within a given time period, the fuel cost of entering such an orbit is prohibitive.

Using aerobraking at Mars for descent, as discussed above, demands very little fuel, and the

AV for insertion into the 200 km elliptical orbit is 2.15 km/s. The preliminary design

presented here uses three passes through the atmosphere, which successively lower the

apoapsis and periapsis to lower the final entry velocity. This maneuver, shown in Tables 2.1.1

and 2.1.2, requires a maximum AV of.3 km/s to enter the atmosphere and allow for final

parachute descent. Thus, for the entire Earth-Mars trajectory, the spacecraft needs to carry

only enough fuel for a total AV of 2.45 km/s.

A similar analysis can be used to describe the Mars-to-Earth transfer. Because the

spacecratt makes a direct entry into Earth's atmosphere upon its return, it requires only

enough fuel to escape from the Martian orbit. The spacecraft launches from the surface into a

low Mars orbit of 200 km since such an orbit provides frequent injection windows. A parking

orbit of this size requires a total AV from the surface of Mars to Earth of 5.64 km/s.
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Date

8 April 2001*

To be determined

25 October 2001

19 April 2003

19 November 2003

Mission Sequence

Event

Earth surface to LEO to

transfer trajectory

Midcourse corrections

Insert into elliptical orbit

around Mars

Perform aerobrakin 8 burns

Parachute to surface

540-day stay

Insert into low Mars orbit

Insert into return trajectory

Arrive at Earth; direct entry

into atmosphere

AV

12.25 km/s

-.5 km/s

2.15 km/s

>.3k_s

3.5k_s

2.14 km/s

Figures 2.1.3 and 2.1.4 illustrate the two transfer trajectories for this mission.
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2.2 Sample Collection

This section identifies the most useful Martian samples to be returned to Earth, describes

methods of collecting the samples, and discusses how the samples are protected until they

reach Earth. The types of samples have been chosen according to the requirements of

planetary geologists, and these types determine the landing site. Furthermore, the methods of

collection are tailored to the types and amounts of samples to be collected.

2.2.1 Types of Samples

Three types of samples are collected from Mars and are returned to Earth: wind-blown

dust, soil, and atmospheric samples. Each of the samples is collected by a separate, unique

collection system, which provides redundancy in the sample-collection process. To provide

additional redundancy, a second sample of dust is collected.

Since the Martian wind-blown dust circulates over the entire planet, a sample of it can

provide planetary geologists with data on the planet-wide composition of Mars. A sample

from the ground near the lander cannot provide such data; it can yield only local geological

information. Therefore, the substantial information that a dust sample can provide makes this

sample the most important one that MARVIN collects [1 ].

The soil sample, which may include rocks, is collected from the ground near the lander.

Because the landing site is near Olympus Mons, the soil sample ought to provide planetary

geologists with more information about Olympus Mons and its history.

An atmospheric sample will benefit scientists who are developing the fuel-production

system. However, because of the low density of the Martian atmosphere, an atmospheric

sample must use some sort of active collection mechanism if a usable amount of atmosphere is

to be collected in a container of manageable size. The atmospheric sample is therefore

collected at a pressure greater than the Martian atmospheric sample.

In addition to these samples, the redundant dust sample is collected with a separate

collection mechanism. Collecting another dust sample with a different collection device

improves sample-collection redundancy. And, if both the primary and redundant dust samples

are successfully returned to Earth, more dust will be available for research.

2.2.2 Amount of Samples

The MARVIN spacecraft returns a maximum of 5 kg of Martian samples to Earth: 1.5 kg

of dust, 2.5 kg of soil, 0.5 kg of atmosphere, and 0.5 kg of redundant dust. This amount is

sufficient for scientific research because the techniques learned in the processing and analysis

of the lunar samples returned by the Apollo program have enabled scientists to conduct



17

research on very small quantities of material. In addition, 5 kg has been suggested by several

planetary geologists and is believed to be an optimum tradeoff between Mars takeoff mass and

scientific utility [2,3 ].

2.2.3 Landing Site

The landing site chosen for the MARVIN project is the Tharsis plateau, which lies

between 0 o and 30 ° north latitude and 90 ° and 135 ° longitude and is shown in Figure 2.2.1

[4]. The Tharsis plateau is interesting to planetary geologists because it includes Olympus

Mons, the largest volcano on Mars, and is a relatively young region [ 1]. Although the region

contains three volcanoes, any of several relatively fiat plains may be suitable landing sites for

the MARVIN lander. The most likely landing site is between 10 ° - 15 ° north latitude and

130 ° - 135 ° longitude. This area is just south of Olympus Mons, in a plain between 2 and 3

kilometers above the mean surface of Mars [4].

Figure 2.2.1. Tharsis Plateau.
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2.2.4 Methods of Collection

To improve redundancy, four separate methods of collection are used to collect the four

samples. Each sample has its own sample container, seals, and collection device. However,

the robotic manipulator has no redundant counterpart and is required for both the soil and the

dust samples. If the manipulator fails, the soil sample cannot be collected, and the dust sample

cannot be placed in the Sample-Return Capsule (SRC).

The dust sample is collected from the hydrocyclone filter and pump system in the fuel-

production plant. Dust settles into the bottom of the filter, where the dust sample container

stores it until the container is full. The robotic manipulator places the dust sample container in

the Sample-Return Capsule. Using the fuel-production system to collect the wind-blown dust

eliminates the need for a separate filter and pump system, thereby decreasing the number of

separate systems on the lander. This decrease reduces total mission mass, increases simplicity,

and lowers cost.

The soil sample is collected by a means similar in concept to that used on the Viking

missions: a robotic manipulator collects soil and rocks from around the lander and places them

in a sample container. However, the manipulator in the MARVIN design is more

sophisticated than the Viking spacecrafis': it has 7 degrees of freedom, a reach of 3 or more

meters, and it is semi-autonomous. A schematic of the manipulator is shown in Figure 2.2.3.

Redundant joints and telescoping members provide the manipulator with operational capability

should a failure occur. In addition to collecting the soil samples, the manipulator places the

containers with the dust and soil samples in the Sample-Return Capsule. The manipulator is

also available for contingency operations and maintenance. Robotic operations requires

several cameras, which the lander would not otherwise need, to provide adequate coverage of

the worksites.
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Figure 2.2.3. Manipulator

The atmosphere-collection system uses a bleed line from the fuel-production compressor

to collect Martian atmosphere and deliver it at 1.3 MPa to the atmospheric sample container.

The atmospheric sample container remains in the Sample-Return Capsule at all times--the

bleeder line runs to the container but disconnects when the container is full. Again, using a

component of the fuel-production plant to collect samples reduces the overall mass and cost

of the lander.

Reliability is an extremely important consideration in the design of the collection systems,

and particularly so in the case of the redundancy sample. Since the sole purpose of the

redundancy sample is to serve as a backup for the dust sample, it cannot not rely on any other

sample-collection devices or components and must be as simple in design as possible. For

these reasons, a deployable dust collector, shown in Figure 2.2.4, has been chosen as the

method for collecting the redundancy sample. A simple mechanism deploys a semi-rigid wind

sock from the Sample-Return Capsule shortly after landing. Air and dust enter the wind sock

through the large opening; the dust is trapped inside the wind sock and falls into the

redundancy sample container in the Sample-Return Capsule. After sufficient dust has been

collected, this collector is jettisoned from the spacecraft.
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Figure 2.2.4. Wind Sock

2.2.5 Sample Containers

The samples must be carefully maintained from the time they are collected until their

arrival at Earth. Volatiles in the samples must not degrade; therefore, the samples must not be

exposed to contaminants from Earth, subjected to extreme temperatures, or exposed to

unusual amounts of radiation. These constraints place stringent requirements on the

containers that carry the samples to Earth, the environment in which the containers are kept,

and their placement on the lander and Mars-Ascent Vehicle. To this end, a highly redundant

protection scheme has been devised. Each of the four samples is stored in its own sample

container, which is vacuum sealed as soon as the sample is collected. The four sample

containers are then placed in a Sample-Container Assembly (SCA), which carries the samples

in the Sample Return Capsule for the trip back to Earth. The SCA is insulated, instrumented

with temperature and pressure sensors, and has two vacuum seals, all of which provide the

samples with a high level of protection from the harsh environment of space.
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2.3 Fuel Production

2.3.1 Fuel Choice

Exploratory Technologies considered four fuel-production systems: production of

methane (CH4) from the Martian atmosphere using imported hydrogen (H2) from Earth;

production ofH 2 from the water (H20) in the Mars polar ice caps, production ofCH 4 from

H20 extracted from the Mars permafrost layer; and production of carbon monoxide (CO)

directly from carbon dioxide (CO2) in the Martian atmosphere. CH 4 - 02 is a fairly effective

propellant, with an I_p0f370 s. However, only the production ofCH 4 from the Martian

atmosphere with imported _ meets the criteria of proven design, low complexity, high

reliability, and the ability to produce fuel at the chosen landing site.

2.3.2 Production-Plant Components

The CH 4 fuel-production facility includes three major components: the Sabatier reactor, an

electrolyzer, and a Reverse Water-Gas Shift (RWGS) unit. This CH 4 fuel-production system

also uses many sub-components such as filters, compressors, refrigeration units, and pumps,

as shown in Figure 2.3.1. The following description explains the operation of the fuel-

production system.



Martian Atmosphere

_--IP_--_ C.yclonel I--_IID_ i

I Dust
Collector I

@, ICO

Membrane
Filter

Pump

H2

S
a

b
a

t
I

e
r

CH 4 + H20-_

Separator __H4

Hea IExchanger

H2

Electrolyzer

__ Liquid CH4

H2 Oj 02

H20 1,_u

.--_, .- _._
Pump

O2

Heat IExchanger

22

Trace Gasses
to Atmosphere

A
i

--4 Condensor

_CO 2

I

H2 ._CO2

+ H20

I
!

_J Separator

I

_L Pump

iquid 02

V
CO to
Atmosphere

Figure 2.3.1. Fuel-Production System
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The Martian atmosphere is first filtered to remove dust particles before continuing through

the rest of the system. Then, the Martian atmosphere is compressed to liquefy the CO 2.

Trace gases are bled off. The CO 2 is then pumped into the Sabatier reactor and the RWGS

unit. In the Sabatier reactor, _ imported from Earth is combined with the Martian CO 2 to

form CH 4 and H20. These substances are separated in a gravity separator. The CH 4 is

pumped through a heat exchanger and refrigeration unit before being stored in the fuel tank.

The I-I20 is pumped into the electrolyzer. The electrolyzer splits the H20 into H 2 and 02.

The 02 also passes through a heat exchanger and refrigeration unit before being stored in the

fuel tanks. The H 2 from the electrolyzer is pumped back into the Sabatier reactor and the

RWGS unit. The H 2 that is fed into the RWGS unit combines with the Martian CO 2 to form

CO and I-I_O. These substances are also separated in a gravity separator. The CO is released

into the atmosphere. The water is pumped to the electrolyzer.

The filter system consists of a cyclone filter in series with a membrane filter. The cyclone

filter creates an internal vortex caused by high velocities of the entering atmosphere, as shown

in Figure 2.3.2. Pressure gradients cause particles as small as 5 microns to be removed [5].

The cyclone filter removes approximately 95% of 5 micron particles and virtually 100% of

particles larger than 10 microns in diameter [1]. As discussed in Section 2.2, the removed

dust is collected for return to Earth. Since better filtration is desired, a membrane filter is

used in conjunction with the cyclone filter.
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To reduceproblemsassociated with possible filter clogging, a continuous fiber-layer

filter, shown in Figure 2.3.3, is used. This filter automatically forwards a roll of

polyacrylonitrile fibers either at specific time intervals or when the pressure difference through

the filter reaches a specified level. Use of high-efficiency fibers allows removal of at least

99% of dust particles as small as 1 micron [5]. Particles smaller than 1 micron should not be

detrimental to the fuel-production process [2].
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The filtered Martian atmosphere is compressed to 1.3 MPa [1]. This compression

liquefies the CO 2 so that nitrogen, argon, and other trace gases can be bled off. High-

pressure chemical metering pumps, pump the CO 2, H20, and O: through the system. The

pumps are designed with an operational lifetime of five years [8,9].

The Sabatier reactor produces CH 4 by combining carbon CO: and H: to create the

following exothermic reaction:

CO: + 4I-_ => CH 4 + 2H20.

The Sabatier reactor, shown in Figure 2.3.4, requires no electrical power. However, for this

chemical reaction to occur, the Sabatier reactor must be maintained at or above 150°C. The

reaction is exothermic and produces a temperature around 1350°C, but some small heaters are

clamped around the reactor to heat the Sabatier reactor initially. The heaters may occasionally

draw power, but that is unlikely [7].
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Figure 2.3.4. Sabatier Reactor in NASA's Fuel-Production Facility
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The electrolyzer dissociates H20 into H 2 and 02 by the process

21-120 => 2H 2 + 02 .

Current unipolar electrolyzer installations have electrical current efficiencies of 99.9%. For

maximum conductivity, a potassium hydroxide solution is required as an electrolyte. For

sealed cells, this original electrolyte charge can be used for up to 10 years. 02 recovered

during this process has a purity of 99.7% [6].

Since the Sabatier/electrolyzer system produces only half the 02 required for

stoichiometric combustion, the system includes a RWGS unit to convert 1-12and compressed

CO 2 to H:O [2]. The unit uses thermal energy to produce H20 and CO through the reaction

CO 2 + H 2 => CO + H20.

CO is a waste product and is vented to the Martian atmosphere [1].

Heat exchanger/refrigeration units liquefy the 02 and the CH 4 for storage in the fuel tanks.

Use of highly insulated tanks and the constant influx of the cryogenic liquids makes boil-off

negligible for the CH 4 and 02 tanks [6]. However, there is some concern about boil-off of the

imported I-I2. Boil-off can best be controlled with a multi-layer vacuum dewar tank

configuration as shown in Figure 2.3.5 [4]. Large land-based tanks currently in use by NASA

reduce boil-offdown to .02% per day [6]. However, this loss in efficiency is offset by the

colder temperatures associated with deep space and Mars as opposed to Earth. Boil-off

during transfer to Mars should be negligible because the temperature of deep space is 3 K.

Furthermore, a .004 cm layer of gold foil on the tank produces negligible radiated heat flux to

the tank [6].
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Usingadewartank shouldlimit theboil-off rateatMarsto. 1%perday. Sincepressureis

requiredfor transportof _ into the Sabatierreactor,thepressurenormallyassociatedwith

H2boil-off is actuallybeneficialfor thisprocess.Boil-off to theatmosphereis reducedasthe

high-pressuregasis fed into thefuelproductionsystem.Thetotalboil-off for the trip should

be no more than 15% and is probably significantly lower than this projected value.

Table 2.3.1. Estimate of Average Power Requirements

for Fuel-Production Components [ 1,2,4,6]

Component

Electrolyzer

Heaters

Compressor

Pumps

Heat Exchangers
TOTAL

Requirement
1065 W

150W

175 W

100 W

515W

2005W

2.3.3 Production Rates

The return trip from Mars (including 5% extra fuel) requires that the fuel-production unit

produce 2801 kg of fuel on Mars. To meet this requirement, 1.03 kg of CI-L and 4.16 kg of

02 is produced each day during the stay on Mars. The production rate is directly related to the

amount of power supplied to the electrolyzer and the size of the Sabatier reactor. To iterate

the component sizing for the spacecraft, numerous spreadsheets were developed using known

component sizes, weights, and production rates.

Primarily, this sizing was performed by producing a curve-fit of the characteristics for

known, tested components. Table 2.3.2 lists the mass of the primary components required for

the required fuel production.

Table 2.3.2. Component mass required to produce 1.08 kg/CH4

and 4.32 kg/O2 per day [1,2,3,8,9]

Component

Imported Hydrosen

Filters

Mass (ks)

168

55

Sabatier Reactor 41
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ReverseWater-GasShiftUnit 41

22Compressor

Pumps

Water Electrolyzer

Heat Exchansers

Other

TOTAL

18

15

8

373

Both the electrolyzer and the Sabatier reactor are proven components, and many working

models exist [3]. However, no working model of the Sabatier reactor of the exact size

required for the MARVIN mission exists, nor has a complete facility of this precise size been

assembled and tested. Thus, the integrated system must still be designed with appropriately

sized components.
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2.4 Propulsion and Power

The MARVIN spacecraft uses a modified Pratt & Whitney RL-10 engine for Mars ascent

and for the return trajectory to Earth. This engine is the same one that provides AV after the

initial, Earth-departure booster and upper stage have been exhausted. Using one engine for all

subsequent, propulsive mission phases not only reduces the mass of the MARVIN spacecraft

over that of other designs [1 ]; it also enables smaller (and therefore cheaper) boosters and

upper stages to be considered. A trade study suggests that, although an Earth-departure

engine that uses a more efficient fuel offers a reduction in fuel mass, the structure required to

attach it outside the aerobrake/heat shield is massive and complex. This structure makes such

a spacecraft more expensive to launch from Earth than the chosen design, in which the merely

engine extends out from inside the base of the aerobrake/heat shield. Furthermore, the size of

such a structure would exclude relatively inexpensive launch vehicles, with small fairings, from

consideration.

2.4.1 Earth-Departure Booster and Upper Stage

The choice of an appropriate booster/upper stage configuration depends primarily on the

launch mass of the spacecraft. Current sizing calculations, shown in Appendix A, suggest that

this mass is approximately 4670 kg, if the booster/upper stage can insert the spacecraft into

the Earth-Mars trajectory. For this case, the RL-10 engine fires only to make small

corrections and to insert the spacecraft in the elliptical Mars orbit discussed in section 2.1.

The primary engine is fueled at launch to provide additional thrust after the booster

separates. The Proton, with an upper stage, can provide sufficient AV for this scenario.

However, despite Lockheed's recent efforts to undertake a joint enterprise with Khrunichev

Enterprises to offer commercial Proton launches[3], the Proton's reliability is less than g0%;

its manifest is booked for 10 years [4]; and its long-term availability remains in question.

The Shuttle can certainly launch the payload, but its cost is several times that of most

Titan configurations. Furthermore, the presence of the nuclear power source and several

pressurized fuel tanks puts crew members at risk. Titan-class vehicles are then clearly the

better choice, but most upper stages (e.g. the TOS and Transtage) do not provide sufficient

performance. The Titan IV/Centaur is more appropriate. The less expensive Atlas IIAS (with

two Centaur burns) is clearly too small. This cost-and-availability analysis, as well as the

exact sizing estimates presented in Section 2.7, lead to the conclusion that the Titan

IV/Centaur is the best choice.
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2.4.2 Primary Engine

TheMARVIN spacecraft uses a modified Pratt & Whitney RL-10 engine for Mars ascent

and for the return trajectory to Earth. The same engine provides AV after the initial, Earth-

departure booster and upper stage have disengaged. Multiple-engine systems can offer some

redundancy, but these systems are far more massive [ 1] than the single RL-10, whose mass is

a mere 167.8 kg [5]. Furthermore, the RL-10 has been tested with CH4, the ISRU fuel for

this mission. Thus, as a low-mass, proven technology, the RL-10 is the preferable solution.

The RL-10 is designed for applications requiring up to 20 restarts, with large variations in

coast periods between firings. Also, it has a gimbaled nozzle, for controllability, and its thrust

can vary to suit the application [5]. This range of thrust, 30,000 N - 98,000 N, is higher than

necessary for this mission, but, as Section 2.7 shows, choosing a low thrust level (such as

30,000 N) means that the Mars-Ascent Vehicle experiences only modest acceleration (0.55 -

4.7 g) as it expends fuel, which is likely to be less than the structure withstands upon landing.

Although the restart capabilities of the reliable RL-10 are well documented, exposure to

Martian dust may affect the engine's performance after its long stay on the surface. Therefore,

mission planners must take steps to ensure the engine's continued health:

• Instrument critical engine components for remote fault detection

• Develop a program of in situ test firings

• Implement a means of clearing the fuel injectors, such as forcing a constant,

slow leak or infrequent bursts ofunignited fuel through the injectors.

Another means of keeping dust out of the engine, lowering the nozzle so that it touches the

surface when the engine is inactive, has the disadvantage that a dune would form on the

windward side of the nozzle, which may affect the spacecraft's ability to launch. Also, the

local surface topography is unknown: the nozzle may be damaged if it strikes a rock as it

descends to protect itself from dust. Therefore, the nozzle should not be lowered.

2.4.3 Fuel Consumption

At Earth departure, the tanks can be fueled so that the RL-10 can provide thrust after

the booster and upper-stage disengage. The propellant must be methane, the ISRU fuel,

because the engine's injection system can be optimized for only one fuel [6]. Fueling the tanks

also enables them to be checked for leaks until just before launch. This feature helps to ensure
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mission success because the fuel tanks are a critical system. Section 2.7 describes these fuel

tanks, which are sized specifically for the amount of fuel in the shown sizing iteration.

Fuel consumption (propellant and oxidizer) follows from the rocket equation,

(1)

where go is the gravitational acceleration of Earth; I_, is the specific impulse (365 - 395 s for

CH4); mf is the final, or dry, mass; and m i is the initial mass (mf + fuel mass). In terms of fuel

mass (rnv,_,), equation (1) becomes

(2)

For this design, the sizing spreadsheet in Section 2.7 shows that an Earth-return AV (from the

surface) of 6.1 km/s and a dry mass of 610.2 kg requires 2668 kg of fuel. Naturally, these

numbers are too precise, but they are meant to serve as a likely example. The spacecraft is

designed to manufacture and store an additional 5% of this fuel mass as a margin for error,

making the total fuel mass 2801 kg. The fuel-production facility requires 168.1 kg of this

mass in _ as seed fuel, which makes the dry mass of the Mars-Lander Vehicle 2289 kg. This

mass and an Earth-departure AV (after escape) of 2.5 km/s require 2384 kg of fuel, which

includes the additional 5%, and result in a total launch mass of 4673 kg

The Titan IWCentaur can provide enough AV to launch 6100 kg into the chosen Earth-

Mars trajectory. However, the Centaur is structurally limited to 5220 kg Despite this

limitation, the MARVIN spacecraft is clearly light enough to be launched on a Titan

IV/Centaur. Future design modifications can increase the Earth-departure mass by as much as

547 kg without exceeding structural limitations. Section 2.7 suggests some ways in which

future work on this project can address this additional capacity.

Because the mass of Mars-departure fuel has a profound impact on the Earth-launch

mass (as shown in Section 2.7), the final design must include a precise model of the launch

from the Martian surface. To this end, Exploratory Technologies has developed a spreadsheet

to model the launch of the Mars-Ascent Vehicle in a fairly realistic way, within the limits of

numerical integration techniques. The spreadsheet includes gravity losses and nozzle-

expansion variation with atmospheric pressure. This model also includes temperature and

density profiles of the Martian atmosphere, as measured on the Viking missions. These
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profiles provide reasonably accurate estimates of drag, taking into account a Mach-dependent

drag coefficient, in which Mach varies with the variable specific heat ratio and temperature of

the Martian atmosphere. Future work in this area may focus on identifying an optimal thrust

level from this data. A thrust for minimum fuel use can be chosen such that it balances

atmospheric drag (associated with high thrust and high velocity) with gravity and pressure

losses (associated with low thrust).

2.4.4 Power Sources

Table 2.4.1 shows the power budget for the on-Mars phase of the mission [7], which

requires the most power of any phase.

Table 2.4.1. Power Budget (Peak)

System Peak Power

Fuel Production 2005 W

CNC 100 W

Sample Collection

TOTAL

75W

2175W

Proven solar-cell systems can provide sufficient power, but for such high power requirements,

their mass and the mass of battery systems may range from 726 kg to 961 kg [8]. This mass is

unacceptably high. Furthermore, structural considerations eliminate such arrays from

consideration: they may range in area from 87 m 2 to 127 m 2 [8]. RTGs are expensive,

massive, and impractical, partly because they must radiate considerable waste heat [9,10].

The Rockwell study [ 11 ] suggests a Dynamic Isotope Power System (DIPS), which uses

a closed Brayton cycle to extract work from the radioactive decay of plutonium (23sPu). Such

a system can provide 2500 W with only 352 kg of mass. The power output exceeds the

requirements of the fuel-production facility, but DIPS systems are sized with a step function

that makes 2500 W the nearest design point. In fact, this design has not been optimized for

spacecraft use. Some components might be made even lighter. Despite the scarcity of nuclear

fuels, 23SPu fuel is readily available, and the supply is expected to exceed the demand for the

foreseeable future. Finally, the DIPS system being proposed is not only a proven technology,

it is highly reliable. Its reliability is greater than 99*/0 over 10 years, and its design life is

approximately 30 years. This reliability and longevity, coupled with the extra power it
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provides, suggests that future work on this project should address the possibility of ensuring

that the DIPS from this mission can be used by future Mars missions.

The spacecraft requires considerably less power during the Earth-Mars and Mars-Earth

trajectories. Therefore, a small photovoltaic system provides electrical power to the craft

during these phases. This system allows the DIPS to be discarded on Mars before littoff.

Communications and control needs are not expected to exceed 100 W. Therefore, a 1.5 m 2

array of gallium arsenide solar cells and a lightweight nickel-hydrogen battery serve these

needs. One reason that the battery can be fairly small is that the depth of discharge can be

high: the spacecrait is rarely occulted from the sun, so the battery requires only infrequent and

minimal recharging. However, these systems are delicate, and one cannot expect the deployed

array to remain intact during aerobraking and landing. Retracting the array before landing

may prove equally difficult. However, the system is light enough that an additional solar array

can be included for use on the Mars-Earth trajectory. For these reasons, the complete power

system includes two virtually identical solar arrays and one battery. One array powers the

spacecraft before Mars descent, and the other after liitofffrom Mars. The DIPS charges the

battery before the DIPS is jettisoned at littoff. The total mass of the system is less than 22 kg.
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2.5 Control and Communications

This section outlines requirements for communications, data storage, and guidance,

navigation and control (GNC). These subjects are grouped together because they are

interdependent, electrical systems. Communications and control serves to support and

monitor the primary mission phases, such as sample collection and fuel production.

2.5.1 Control

Control for MARVIN is automated, yet reprogrammable from Earth. Onboard sensors

determine the position of the spacecraft and its orbit. Actuators are used to alter the

orientation of the spacecraft.

2.5.1.1 Automation

Because the round-trip light time from Mars to Earth ranges from 10 to 40 minutes,

real-time remote control of the MARVIN mission is impossible. Real-time, onboard

navigation is necessary to complete landing, takeoff and attitude-change maneuvers.

Autonomy also reduces personnel requirements on Earth [1 ]. However, this automation

cannot be the sole means of control. In case of emergency, Earth-based control must be

possible.

Furthermore, handshaking from Earth-based computers provides frequent checks on

spacecraft maintenance. In order to react to unforeseen contingencies, any automated

process in the MARVIN mission must be reprogrammable. This balance of automation and

control from Earth is essential to mission success.

2.5.1.2 Stabilization

Like many previous interplanetary missions, the MARVIN spacecraft is primarily

three-axis-stabilized. Unlike spin stabilization, three-axis-stabilization simplifies the structure

and the instrumentation of the spacecraft. Instruments like antennas and cameras can be

mounted onto the spacecraft frame, rather than be despun on a special platform. Three-axis-

stabilization also simplifies the design of the MAV solar array. [2]

However, during orbit transfer thrusting procedures, the spacecraft requires spin

stabilization. Spinning the MARVIN vehicle creates a gyroscopic rigidity that reduces torque

due to thruster misalignment. [2] After thrusting is completed, the attitude-control system

returns the MARVIN spacecraft to three-axis-stabilization.
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2.5.1.3 Sensors

The following equipment provides real-time guidance during orbit insertion, landing,

takeoff and slewing procedures [3]:

• Rate-integratedgyroscopes (RIG). These gyroscopes can be calibrated with star

mappers in order to precisely track the angular orientation of the spacecraft(s) in real-

time. They have a calibrated drift rate less than .05 degrees per hour. [4]

• Accelerometer. A closed-loop accelerometer oriented in the direction of the thruster

integrates thrust to provide AV estimates.

2.5.1.4 Actuators

Control actuators, controlled by the onboard computer, correct the attitude of the

spacecraft(s). These actuators also perform midcourse correction maneuvers. The MARVIN

design uses monopropellant hydrazine control jets. A network of sixteen hydrazine jets

provide fine attitude control. Eight jets have a thrust of one newton each, and the other eight

jets have thrust often newtons each.

The MARVIN mission requires two independent control jet systems. One system is

housed on the MLV, and the other on the MAV. Because the MAV is nested within the

MLV, they cannot share control-jet systems. Therefore, two separate systems must be used.

2.5.1.5 Health-Monitoring System

Most spacecraft emit a health message along with their other communications. The

MARVIN mission also incorporates an independent health-monitoring system This system

communicates the status of MARVIN hardware to both an on-board control computer and an

Earth-based computer

2.5.2 Navigation

Both Earth-based mission control and onboard devices estimate position and de_ermine

the orbit. On the spacecraft, sensors provide data for automatic position determination

Simultaneously, Earth-based computers use NASA's Deep Space Network (DSN) to

determine the position and orbit of the spacecraft

As did the previous Viking and Mars Observer Missions, the MARVIN mission uses

the DSN for both orbit determination and communication. Periodically, the 70 meter antenna

subnetwork uses interferometry to precisely determine the orbit of the MARVIN craft This

subnetwork is strategically located at 120 degree intervals of longitude around the Earth, in
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Goldstone, California; Madrid, Spain, and Canberra, Australia.[ 1] This subnetwork is

remotely controlled from Jet Propulsion Laboratory (JPL) in Pasadena, California.

2.5.2.1 Sensors

The following sensors are used for position determination [3]:

• Star mappers. Two fixed star mappers can provide vectors to bright stars, such as the

star Canopus, tracked by the Voyager mission [1]. Star mappers were chosen over star

trackers because star mappers map several stars at once. The error in a star mapper's

angular-position reading ranges from +1 arc minute to +1 arc second [5].

• Charge-couple device (CCD) camera. This device produces digital images of the

MARVIN vehicles and their environments. On the surface of Mars it monitors the

Martian landscape and sample-collection activity. It also serves as a low-performance,

redundant star mapper in orbit [1].

• High-quality sun sensor. This device provides a vector to the sun. This information can

be used to protect the charge-couple device and star mappers from direct exposure to the

sun.

2.5.2.2 Collision-Avoidance System

In order to land safely on the rocky surface of Mars, the MAV needs a collision-

avoidance system. Like the Viking lander's, this system can employ radar to determine

precise altitude and to avoid obstacles such as boulders. This system can also determine the

slope of the terrain as the MAV descends. Design of this system, while important, is beyond

the scope and resources of Exploratory Technologies. This important design feature must be

investigated before MARVIN is implemented.

2.5.3 Communications

Communications systems transmit scientific and mission-control data back to Earth.

The MARVIN mission uses a communications system similar to most of the interplanetary

missions before it. Earth-based personnel use these data to monitor the progress of the

MARVIN mission. Several types of data are communicated to Earth:

• Fuel-production data

• Sample-collection data

• Power drawn

• Video images

• Hardware-health status message
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• Navigation and attitude-sensor measurements

• Onboard position and attitude determination

2.5.3.1 Orbiter Usage

An analysis of communications needs suggests that the MARVIN spacecraft does not

need to deploy an orbiter. The success of the Viking mission demonstrates some of the

benefits of using an orbiter; however, the Viking orbiter increased the data exchange from the

Viking Lander only 50 percent [6] Such an increase does not merit the increased complexity

and cost of an orbiter in this mission.

2.5.3.2 Data Rates and Frequency Selection

The MARVIN mission uses standard DSN frequencies. Most interplanetary

missions--from Voyager to Viking to Mars Observer--have used these frequencies and data

rates. Table 2.5.1 summarizes the uplink and downlink frequencies and data rates [1,6,7]:

Table 2.5.1. Uplink and Downlink Frequencies and Data Rates

Downlink

Uplink

Frequency

S-band

X-band and

S-band

Data rate (maximum)

85 kbits/s

500 bits/s

2.5.3.3 Antenna Sizing and Selection

The MARVIN mission employs one high-gain, 1.5 meter diameter antenna, as well as

one low-gairL,. 1 m diameter antenna. This selection is based on the earlier, successful Viking

and Mariner missions [ 1,6] However, the structural design of the high-gain antenna involves

some complex considerations. The antenna must withstand two launches: one from Earth

and one from Mars. A rugged antenna design is therefore necessary. The high-gain antenna

is an umbrella structure, deployed when the spacecraft is in three-axis stabilization mode and

on the surface of Mars. It is retracted during launch, landing and orbit-transfer phases

On Earth, the MARVIN mission communicates with the 34 meter DSN subnetwork.

This subnetwork is located at the same sites as the 70 meter subnetwork mentioned in

Section 2.5.2. Like the 70 meter subnetwork, the 34 meter subnetwork is remotely
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controlledby JPL. Because its antennae are distributed at intervals of roughly 120 degrees of

latitude about the Earth, one antenna is always in view of Mars.
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2.6 Structures

The MARVIN spacecraft consists of three major components: the Mars-Lander Vehicle

(MLV), the Mars-Ascent Vehicle (MAV), and the Sample-Return Capsule (SRC). The

design of the MARVIN spacecraft incorporates the landing gear, the heat shields, the fuel-

production assembly, the sample-collection/storage devices, and the propulsion system into

the overall design of the spacecraft. A scaled model of the MARVIN spacecraft, showing

these systems, has been constructed.

The spacecraft module was designed to accommodate all of the components. It takes into

account their masses and sizes, according to the information in Section 2.7. Furthermore, the

design is simple, lightweight, reliable, and compact. The following sections present a more

detailed discussion of the design and development of the three structural components. The

overall dimensions of the final MARVIN spacecraft design are driven by the payload-mass

estimates and component sizing.

2.6.1 Mars-Lander Vehicle (MLV)

The MLV is the module that travels from Earth to Mars. Its structure includes the central

frame and the landing gear. Payload elements are attached to the structural frame of the

MLV, as shown in Figure 2.6.1. This frame supports the MAV, the avionics, the fuel-

production plant, the robotic manipulator, and the seed I-[2 tank. Furthermore, the design of

the MLV takes into consideration that certain components should be near one another to

minimize the mass of piping, wiring, etc. The height of the MLV, with the landing gear

retracted, is 5.0 m, and its diameter is 3.5 m. This design easily fits within the selected Titan

IV booster fairing, which is capable of housing packages 6.0 m high and 4.5 m in diameter.

The additional, radial 1.0 m in the fairing has been reserved for an aerobrake/heat shield. With

its landing gear fully extended, the MLV is 6.0 m high and 9.0 m wide. This configuration

leaves a 1.0 m clearance between the engine nozzle and the surface of Mars.
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Figure 2.6.1 Mars-Lander Vehicle
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2.6.1.1 MLV Central Frame

The central frame includes three 2.4 m diameter structural rings connected by vertical

beams and other cross-members. The MLV consists of two parts. The lower structural frame

is 1.0 m high and supports all the seed I-I: tanks, the power facility, and parts of the fuel

production facility. The upper structural frame is 0.5 m high and houses part of the fuel

production facility, the sample collection device (robotic arm), and the radiators. In addition

to supporting the various scientific components, the MLV also acts as a launch pad for the

MAV. The MLV central truss frame and the components it houses remain on Mars once the

MAV launches offthe surface. Furthermore, components supported by the central frame are

shielded to reduce heat loading as the spacecraft passes through the Martian atmosphere and

to protect them from the Martian environment.

2.6.1.2 MLV Landing Gear

The landing gear is a very important system for the MARVIN spacecraft. Its most

important role is to ensure that the lander either touches down in a nearly vertical position or

is able to orient the MAV so that it can take off from a vertical configuration. To accomplish

these tasks, landing-gear struts incorporate extensible members. Figure 2.6.2 shows the upper

struts of the landing gear under consideration. The upper strut is a telescoping member.

Initially, the MLV lands with its landing gear in a fixed position. Once the MLV has landed,

hydraulic actuators autonomously adjust the extendible struts to ensure the MAV is in a

vertical position. These landing-gear legs are not fully designed and should be further

investigated.
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2.6.2 Mars-Ascent Vehicle

The center of mass of the entire structure must be near the base for Mars landing and

launch considerations. Thus, the MAV is nested within the MLV and is attached to the

latter's lower support flame. The MAV has an overall height of 5.0 m and diameter of 3.5 m.

The MAV is not merely the Mars-launch vehicle, it also includes the SRC. The design of the

MAV is presented in Figure 2.6.3. The MAV consists mainly of a support flame, avionics,

solar cells, the rocket engine, four 0 2 tanks, one CH 4 tank, and the SRC. When the MAV is

launched, pyrotechnic bolts separate it from the MLV frame.
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2.6.3 Sample-Return Capsule

The SRC, which separates from the MAV at Earth and is retrieved after atmospheric

entry, consists mainly of a re-entry shield, a sample-storage facility, and perhaps parachute and

propulsion systems. The SRC is approximately 1 m high and 1 m in diameter. The sample

container is placed in such a way that the heat shields protect it from solar radiation. This

placement eliminates the need for a refrigeration system. Figure 3 suggests a design for the

SRC Once the SRC has entered the Earth's atmosphere, air snatch or splash down ensues for

sample retrieval.

2.6.4 Propellant Tanks

Since the Mars-Earth portion of the spacecraft journey requires the most fuel, the

propellant tanks are sized according to the total volume of fuel that is needed for this transfer.

Spherical propellant tanks are chosen because it reduces the surface area to volume ratio and

the mass to volume ratio. This optimization helps to reduce boil-offand helps to reduce mass.

Table 2.6.1 shows the quantity and the sizes of the tanks used in the MARVIN spacecraft.

Table 2.6.1 Fuel Tank Outer Radius

H2 Tanks (4)

02 Tanks (4)

CH 4 Tank (1)

0.491 m

0.490 m

0.541 m

2.6.5 Materials

Aluminum-Lithium 2090-T83 was chosen as the material for all truss members because

this material exhibits desirable properties: high stiffness-to-density ratio, high ductility,

excellent workability, non-magnetism, and high corrosion resistance. Aluminum-Lithium is

better than conventional Aluminum 2024 because these materials can offer a 30% reduction in

weight and can have a tensile strength above 100 ksi.

Titanium is chosen for all fittings between structural components. This material exhibits a

substantially greater yield strength than aluminum alloys, which makes it an advantageous

material at joints, where stress concentrations are likely to appear. In addition, titanium is

selected for the inner wall of the O2 and CH 4 propellant tanks. However, titanium reacts with

I-I: and becomes brittle. Thus, steel is chosen for the H2 propellant tanks.
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Heat shields can be made from a combination of HTP-6 tiles and AVCO-5026 ablator.

These tiles are new-generation Shuttle tiles, and the ablative material is basically the same

material that Apollo used.
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2.7 Sizing

2.7.1 Methods

Estimating the mass of the three configurations of the MARVIN spacecraft is, of course,

an iterative process. For this reason, exploratory technologies has designed an iteratively

solved spreadsheet to calculate the mass of the MLV and that of the MAV. The mass of the

SRC is virtually independent of the sizing of other equipment. However, the cost and, in fact,

the feasibility of this mission are very sensitive to some parameters. Analysis of the mission

has shown that the AV required for Mars departure and Earth return is such a parameter. For

example, a 20% increase in this AV more than doubles the required fuel-production rate; and,

because the fuel-production plant is sized for a certain production rate, the Earth-launch mass

is ultimately greater.

Cells in the spreadsheet include component mass as functions of a few quantities, such as

fuel-production rate, DV and H2 mass. Fuel tanks are also sized with some care: since the

fuel tanks are nearly empty when the spacecraft lands on Mars, they need not be as strong as

the H 2 tank, which is full at landing and thus more likely to burst. Structural mass (along with

cabling, shielding, etc.) is estimated from an empirical formula based on other designs,

coupled with information from the structural analysis discussed in Section 2.6.

This spreadsheet has enabled Exploratory Technologies to choose trajectories that use the

fuel tanks most efficiently: ideally, the tanks should be sized for Mars Ascent to minimize that

mass, and they are. However, since the engine also operates between Earth and Mars, the

trajectory and booster design have been chosen such that the capacity of these tanks is not

wasted. Furthermore, analysis of the spreadsheet can identi_ those systems in which weight

reduction offers the greatest overall benefits.

2.7.2 Design Perturbations

One way to perform the analysis suggested above is to perturb some element of the design

from its nominal state and examine the overall effects of these perturbations. Such an

analysis was undertaken for wet mass because this parameter is an effective measure of the

cost of the mission. The analysis identifies two important types of component mass:

• Mass jettisoned before takeoff

• Mass returned to Earth

Each one contributes differently to the overall mass of MLV and the MAV. The mass

returned to Earth affects the overall mass the most. Figure 2.7. l shows that a 1% increase in



54

thisparameter(from the nominalvalue,shownas0.000in the figure) increases the mass of

the MAV by 6% and that of the MLV (which includes the mass of the MAV) by 9%. Clearly,

the SRC must be sized with some care.
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The mass brought to Mars but not returned, such as the 352 kg DIPS, also affects the

MLV mass in a substantial way. Interestingly, it also affects the MAV mass, partly because it

affects structural mass (a function of fuel mass). Figure 2.7.2 shows that a 1% increase in this

parameter increases the mass of the MAV by 2% and that of the MLV by 4%. Of course,

mass leit on Mars is not wasted; it may play a role in future missions, providing infrastructure.
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ISRU makes the MARVIN project more cost-efficient than it would otherwise be.

However, the l_p of the ISRU fuel is comparatively low, and the fuel mass is substantial. If the

Isp were even a little higher, the exponential nature of fuel use would drop significantly.

Figure 2.7.3 illustrates this point. It shows that, for example, a 5% increase in I_p reduces the

mass of the MLV by 8% and that of the MAV by 6%.
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Again, the fuel mass, which grows exponentially with dry mass, contributes the most to

the overall wet mass of the spacecraft. In turn, fuel mass is an explicit function of the AV

required for orbital maneuvers. As an example, Figures 2.7.4 and 2.7.5 shows the effect on

spacecraft mass of the AV for insertion into the Mars-Earth orbit and the Earth-Mars

trajectory, respectively. In the Figure 2.7.4, the function is almost linear, and, as one would

expect, this AV has virtually no affect on the mass of the MLV for small perturbations of the

design. However, if the perturbations were larger, the graph would show that MLV mass

increases because it must carry a larger fuel-production system (and perhaps a larger power

supply) in addition to the structural mass and the associated fuel and tank masses to

accommodate it. Figure 2.7.5 shows that the AV for Earth return has an even greater effect

on the mass of the configurations.
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Although this design-perturbation analysis concerns small variations from the nominal values

shown in the appendix, other ISRU missions with sample return can use these results. They

ought to be valid for small perturbations of any similar design. Furthermore, with is

information, more effective trade studies can be performed during the initial stages of planning

a mission like MARVIN, in which the fuel, trajectory and sample-return subsystems are

chosen early in the design process.

2.7.3 Expansion Possibilities

The design that this report describes includes some margin for safety. For example, in

addition to the redundancy options presented in Section 1.0, the spacecraft carries 5% extra

fuel; its fuel tanks are sized with appropriate bursting safety factors; and 20% extra hydrogen

is included for boil-off However, even with these and other provisions, the mass of the

spacecraft is less than the maximum capacity of the Titan IV/Centaur. Exploratory

Technologies presents some suggestions for enhancing the mission in an effort to take

advantage of the 547 kg margin. Section 2.7.2 provides data that shows what percent

increase in the different types of components can make up the difference. This section

provides some specific suggestions.

First, if the design presented in this report is incomplete in some way--for example, if the

structural mass has been underestimated--the 547 kg may enable the problem to be resolved

without altering the basic design. Also along these lines, if aerobraking requires more fuel

mass or if the aerobrake/heat shields prove to be heavier than expected, the basic design may

still be valid. If the mass increases beyond 547 kg, a different booster/upper stage must be

chosen, although most other aspects of the mission would be unaffected.

Several other options can improve redundancy. One of the simplest of these options is to

increase the fuel-production rate, which must be accompanied by an increase in the mass of

the fuel-production system and associated systems. This increase would follow the trend

suggested in Figure 2.7.2. An higher fuel-production rate would provide some safety in the

event that a critical system were to fail after some time on Mars. The spacecraft might already

have produced enough fuel to return the samples.

Another option is to bring additional fuel to Mars, which the spacecraft could use on

either the Earth-Mars trajectory or the Mars-Earth Trajectory. The fuel might even be left on

Mars for future missions to use. Finally, any system (even the DIPS) might be duplicated for

greater redundancy.

Up to 547 kg of scientific equipment might instead be built into the spacecraft so that it

could analyze samples on Mars. If such equipment is used, the mission would not be a

complete failure if no samples are returned. Scientific equipment might also be used for other
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purposes,such as astronomy (on-orbit). Furthermore, this equipment might include life-

science or materials-science experiments in preparation for a manned Mars mission. Video

cameras, in addition to those MARVIN already incorporated, could be included to provide

public-relations material. All of these suggestions deserve careful scrutiny, but the flexible

design of the MARVIN mission makes them worth considering.
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3.0 Management Costs

This section compares estimated costs to actual costs incurred in Exploratory

Technologies' research of Project MARVIN and its management of the project. This section

discusses neither the cost of the technical design nor that of its components.

3.1 Personnel Costs

The staff of Exploratory Technologies assigned to Project MARVIN are listed in Table

3.1.1. Their positions on the project and their hourly work rates are shown.

Table 3.1.1. Staff, Positions, and Hourly Rates

Name

Ursula CaUaway

Julia Shane Oltman

Ben Harris

Gre_ Merritt

Michael Parker

Mason Peck

Julian Turner

Norton Won_

Anthony Perez

Position

Prosram Manager / Engineer

Administrative Officer / Ensineer

Enl_ineer

Ensineer

Engineer

Engineer

Engineer

En[_ineer

Co-Op/Intern

Hourly Rate ($)

45

40

38

38

38

38

38

38

15

Throughout the project each person submitted a time card that showed how many hours he or

she worked on a particular team. Each team submitted a weekly timecard on Fridays. The

hours spent on team tasks were added to group-meeting hours and presentation or technical

writing hours. The Administrative Officer recorded the total hours each group member

worked on Project MARVIN each week.

In order to provide a cost estimate for the proposal, the Administrative Officer developed

a method for calculating the estimated personnel costs. This method was based on an average

of 10 working hours per week, per person, for a normal week and an average of 15 working

hours per week, per person, for weeks during which a presentation occurred. Of the fifteen

weeks spent on Project MARVIN, four were presentation weeks and eleven were normal

weeks.
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ExploratoryTechnologies had expected that each team member would have worked 170

hours on Project MARVIN by the end of the project. The actual hours that each team

member has accumulated are shown in Table 3.1.2, as is a comparison of the budgeted and the

actual personnel costs.

Table 3.1.2. Hours, Budgeted Personnel Costs and Actual Personnel Costs

Name

Callaway

# of hours

191

Personnel Costs---

Budgeted

7,650

Personnel Costs--

Actual

8,595

Harris 135 6,460 5,130

Merritt 165 6,460 6,270

Oitman 153 6,800 6,120

Parker 187 6,460 7,106

Peck 231 6,460 8,796

Perez 44 2,550 660

Turner 163 6,460 6,194

Won_ 207 6,460 7,866

Subtotal [ 1,476 55,760 56,737

Figure 3.1.2. displays the estimated and actual accumulated hours through each week of the

project. As the figure shows, Exploratory Technologies did not meet the expected

accumulated hours of 1530: the actual accumulated hours totaled only 1476.

Exploratory Technologies' original budget neglected to include an estimate for consulting

costs. Consulting costs have now been included as additional personnel costs. All consultants

were compensated for time spent providing information to the engineers working on this

project. Each consultant received a base rate of $80 an hour. The consulting fees totaled

$880. Table 3.1.3 lists the consultants that were contacted, the hours they spent with Project

MARVIN engineers, and their total fees.

Table 3.1.3. Consultants Contacted for Project MARVIN and Their Fees

Consultant

Adam Bmckner

John Bosak

David Garza

Dr. Goodin_
John Jones

David Kaplan

NumberofHours Total Fee ($)
80

80

80

80

80

80
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Elfe_;oPifion
Thomas Sullivan

80

1 80

Joe Sovie 1 80

Dr. Delbert Tesar 2 160

Subtotal I 11 ] 880

3.2 Computer Costs

The budgeted computer costs of computer time and supplies for Project MARVIN are

shown in Table 3.2.1

Table 3.2.1. Budgeted Costs of Computer Time and Supplies

Computer

Macintosh

IBM PC

UNIX (Sun)

Mainframes

Subtotal

Cost/Week per

Emplo_,ee ($)

20

Total Usage

Cost ($)

2,700

675

675

30 4,050

Supply Cost

50

10

65

Total Cost

2,750

685

680

4,115

The actual computer costs were slightly lower than the budgeted computer costs, with a total

of $3,980, because the usage time was less than expected.

3.3 Material Costs

Table 3.3.1 provides a list of estimated, total material costs incurred during Project

MARVIN and the actual material expenses for the project.

Table 3.3.1 Estimated Total Cost of Materials and Actual Material Expenses

Item

Photocopies @ $0.08 ca.

Design Model

Project Poster

Estimated Expense {$)

250

Actual Expense {$)

240

35 52

15 5
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ProjectNotebooks 20 20

Long DistanceTelephoneCalls 120 115
Travel 150 135

MiscellaneousSupplies 25 24
Subtotal 615 591

3.4 Total Project Cost

Exploratory Technologies initially estimated that the total cost of Project MARVIN,

including personnel, computer, and material costs would be $60,490. As the information in

Table 3.4.1 shows, Exploratory Technologies went slightly over budget with an actual project

cost of $62,188.

Table 3.4.1. Actual Expenses of Project MARVIN

Type of Expense

Personnel Costs

Computer Costs

Material Costs

Total [

nudseted Cost t$)

55,760

4,115

615

60,490 [

Actual Cost tS)

57,618

3_980

591

62,189
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Glossary of Terms

Accelerometer: a sensor that measures acceleration.

Charge Couple Device (CCD): a digital camera that uses photons to charge cells in a super-

cooled semiconductor array. The charge of each cell determines the amount of light

on that cell. This array forms a digital image.

Deep Space Network (DSN): a communications network used by NASA for communications

and orbit determination for interplanetary craft.

Delta V (AV): a change in velocity of a spacecraft during orbital maneuvers.

Downlink: communication from a spacecraft to ground control. See uplink.

Electrolyzer: a device that produces chemical changes, such as the dissociation of water into

hydrogen and oxygen, by passage of an electrical current through an electrolyte.

Fortran (FORTRAN): a symbolic, algebraic, and logical language for programming a

computer (formula translation).

Gyroscope: a wheel or disc mounted to spin rapidly about an axis and also free to rotate about

one or both of two axes perpendicular to each other and to the axis of spin so that a

rotation of one of the two mutually perpendicular axes results from a torque applied to

the other when the wheel is spinning and so that the entire apparatus opposes torques

that would change the spin axis.

Hohmann Transfer: a minimum-energy, two-body orbital transfer technique, in which the

satellite transfers from an initial circular orbit to the periapsis of an elliptical orbit,

whose apoapsis distance is equal to the radius of the desired final, circular orbit. The

second burn takes place at the apoapsis of the intermediate, elliptical orbit.

Hydrazme: A propellant. MARVIN control jets thermally decompose liquid, anhydrous

hydrazine (N2H4) into nitrogen, ammonia, and hydrogen to produce thrust. The

specific impulse of hydrazine ranges from 200 seconds to 250 seconds. Liquid

hydrazine has the same density as water.

Hyperbolic Excess Velocity Squared (C3): the square of the velocity (with respect to some

body) of an object at quasi-infinite distance from the body. If an object is traveling at

exactly escape velocity, C3=0. If the object is traveling any faster, C3>0. C3 = twice

the launch or arrival energy at a planet (per unit mass) and equals to the square of

Vit_nity.
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Interferometry: use of two or more radio telescopes to amplify a radio signal. Basically, the

precision of a radio signal is proportional to antenna diameter. By using two antennae,

one can simulate a "virtual" antenna the size of the distance between two original

antennae. This is an important key to the incredible orbit determination capabilities of

the NASA Deep Space Netwrok, which has antenna networks distributed around the

globe.

lsp (Specific Impulse): the impulse per unit mass (of the spacecraft) that an engine imparts to
a rocket.

Lambert Targeting: a method of trajectory analysis based on Lambert's Theorem, which

states that a given trajectory is defined by only two position vectors and a time of

flight.

LEO: low Earth orbit.

Light Minute: the distance light travels in a vacuum in 60 solar seconds.

Mars-Ascent Vehicle (MA V): the vehicle, which consists of parts of the MLV, that travels

from the Martian surface to LEO.

Mars-Lander Vehicle (?v/Lt'): the module that travels from Earth to Mars. It consists of a

structural frame to which the payload elements are attached.

Moment of Inertia: the ratio of the torque applied to a rigid body free to rotate about a given

axis to the angular acceleration thus produced about that axis; a measure of the body's

resistance to angular acceleration.

Reverse Water-Gas Shift (RWGS): Combines CO 2 and H 2 to produce CO and H20.

Round-trip light time: total time for a command to be sent to a remote spacecraft. This not

only includes the time to reach the spacecraft, but also the time it takes for a

verification message to be sent to ground control.

S-band: radio communication frequency of 2.3 GHz.

Sabatier Reactor: a reactor that uses a catalyst to convert hydrogen and carbon dioxide to
methane and water.

Sample-Return Capsule (SRC): the structure that separates from the MAV and enters Earth's

atmosphere.

Slewing. spacecraft reorientation.



74

Spin stabilization: stability mode in which a spacecraft rotates about an axis of minimum or

maximum rotational inertia. This spinning creates a gyroscopic rigidity which reduces

the effect of disturbing torques.

Star Mapper: a sensor that views a small region of the sky, providing vectors to the brightest

stars. It outputs the relative positions of stars to Earth and to the onboard processor.

Sun Sensor: a sensor that provides a vector to the center of the sun's disk. This data is used

to protect sun-sensitive equipment.

Three-axis-stabilized: stability condition requiring spacecratt attitude is constant with respect
to the stars.

Uplmk: communication to a spacecraft from ground control. See downlink.

V infinity: the excess velocity of a spacecraft in a hyperbolic orbit relative to a planet.

X-band: radio communication frequency of 8.4 GHz.
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AppendixA
SizingSpreadsheet



MassBudl_et(summa_)
Mass(kg)
GNC 20(I.00

Sample Collection

Fuel Production (from UW report & Ursula)

Propulsion

Power Systems

Subsystcms TOTAL

75.10

372.93

298.43

353.57

13(_.03

Fuel Use, Wet & Dry Masses

MAV

Total Excluding Structures

Structural Mass from empirical formula

Mass of cabling, ctc. (Wcrtz & Larson)

Landing Gear (bascd on Lunar Polar Coring Lander)

Parachute (linearly, from U. Wash. Report)

(MLV shield area, m ^ 2)

Hcat Shield = 1% 1522K, 30% 90(I-100!)K, 69% 640-900K

SRC Structural Weight

(SRC shield area, m ^ 2)

Heat Shield = 11)% 1522 K, 911% 91tf) - 1000 K

(from UT Subsystems Guide)

MLV Total (dry mass)

qaotal Earth - Mars Delta-V (m/s):

Minimum Fuel Use Earth-Mars

+ 5% for control, adjustments
Total Earth - Mars Fuel

MLV Total iwet mass)

4O

6

2500.1)0

1300.1)3

254.15

25.41

272.51/

127.19

21/5.12

40.00

64.96

2289136

2270.61

113.53

2384.14

J_673.50



MAV

Dry MAV Mass= MLV -fucl prod - all samplccoll. -
landinggear-parachutc - h2 - DIPS - MLVgnc - shield
extrah2 tank + 5 kg samples- 70% structure + containers
Total Mars - Earth Dclta-V (m/s):
Fuel Use Mars-Earth

+5% l'or control, ad_stments

Total Mars - Earth Fuel

MAV Total (wet mass)

6100.00

610.21

2668.(}3

133.40

2801.43
i

3411.64

Phase with Most Fuel:

max o2

max oh4

2801.43

1867.62

933.81

T_

* lsp=

Launch Environment:

30()10

370
IMin G

IKg fuel/day

I# Days:

(I.55

4.67

5.19

54(I.00


